(d, *J* = 7.3 Hz, 3 H); 13C NMR (CDC1,) **6** 221.65 **(a),** 62.82 (d), 59.40 **(e),** 51.46 (d), 43.00 (t), 41.39 (t), 41.27 (t), 38.62 (a), 35.80 (t), 35.36 (t), 27.06 (t), 15.45 **(9);** MS *m/e* (re1 intensity) 178 (M', 47), 109 (77), 96 (100); HRMS calcd for C₁₂H₁₈O 178.1357, found 178.1375.

($1S^*, 4S^*, 8R^*$)-5,5-Dimethyltricyclo[6.3.0.0^{1,4}]undecan-5one (15). Cyclopropanation of 6-methylenetricyclo^{[6.3.0.01,4}] undecan-bone (20)15 (1.62 g, 9.20 mmol) **using** Me3SOI and NaH-DMSO **was** carried aut *accardiag* to the procedure of Corey18 to give cyclopropyl ketone 21 (1.18 g, 68%) after flash chromatography (elution with ether-petroleum ether, 595): IR (neat) 3050, 1680 *cm-';* 'H NMR (CDCIS) *6* 2.81 (dd, *J* = 8.5, 7.0 *Hz,* 1 H), 2.6-1.1 (m, 15 H), 0.9-0.5 (m, 2 H).

A mixture of 21 (188 mg, 0.99 mmol) and platinum(IV) oxide (150 mg, 0.66 mmol) in acetic acid (7 **mL)** was stirred at rt for 3 h under 1 atm of H_2 . The mixture was filtered through a pad of Celite, and the filtrate was concentrated to give the crude product containing 15 and overreduced alcohols. To a stirred solution of pyridine (1.39 mL, 17.3 mmol) in CH_2Cl_2 (10 mL) was added chromium(VI) oxide (866 mg, 8.66 mmol) at rt. The mixture was stirred for 20 **min,** and then a solution of the above product in CH₂Cl₂ (5 mL) was added in one portion at rt. The mixture was stirred for additional 1 h, and the solution was decanted from the residue, which **was** washed with ether. The combined organic solutions were washed twice with 10% NaOH, 10% HCl, aqueous NaHCO₃, and brine, successively, and dried $(MgSO₄)$. Evaporation of the solvent followed by flash chromatography (elution with ether-petroleum ether, 5:95) of the crude product gave 15 (152 mg, 80% from 21).

15: IR (neat) 1700,1380 **an-';** 'H NMR (CDC13) *6* 2.77 (dd, *J* = 9.3, 4.9 Hz, 1 H), 2.32-2.14 (m, 2 H), 2.07-1.91 (m, 2 H), 1.89-1.65 (m, 5 H), 1.58-1.43 (m, 4 H), 1.21 *(8,* 3 H), 1.06 *(8,* 3 H); ¹³C NMR (CDCl₃) δ 220.58 (s), 51.68 (s), 47.80 (d), 44.80 (t), 43.42 **(s),** 40.04 (d), 39.20 (t), 35.30 (t), 31.55 (t), 27.41 (q), 25.40 (q), 24.01 (t), 21.82 (t); MS *m/e* (re1 intensity) 192 (M', 12), 108 (100); HRMS calcd for $C_{13}H_{20}O$ 192.1514, found 192.1511.

3,3-Dimethylbicyclo[**6.3.O]undeca-l(8),4-clien-4yl** Acetate (16) and (**1R*,5S*,8S*)-3,3-Dimethyltricyclo[6.3.0.01~s]un**decan-4-one (17). Reaction of 15 (45 mg, 0.23 mmol) with BF3.0Eh (5.8 *pL,* 0.046 mmol) in AczO (1 **mL)** at 0 "C for 19 h **as** described above gave 16 (20 *mg,* 45%), 17 (16 *mg,* 45%), and 15 (8 mg). Reaction of 15 (50 mg, 0.26 mmol) with AlCl₃ (69 mg, 0.52 mmol) in CH_2Cl_2 (2.5 mL) was done according to the procedure described previously² to give 17 (43 mg, 86%).

16: IR (neat) 3000, 1750,1660,1355,1210,1060, 1020 cm-'; ¹H NMR (CDCl₃) δ 5.22 (t, *J* = 9.5 Hz, 1 H), 2.55-2.47 (m, 4 H), 2.44-2.37 (m, 2 H), 2.29-2.19 (m, 4 H), 2.12 *(8,* 3 H), 1.79-1.69 (m, 2 H), 1.08 (s,6 H); 13C *NMR* (CDCl,) **6** 169.91 **(e),** 154.79 **(a),** 134.79 **(a),** 131.50 **(a),** 116.67 (d), 42.45 (t), 41.75 **(a),** 39.52 (t), 39.15 (t), 31.07 (t), *28.09* (q,2 C), 22.16 (t), 21.92 (t), 21.12 **(9);** MS *m/e* (rel intensity) 234 (M^+ , 6), 98 (100); HRMS calcd for $C_{15}H_{22}O_2$

234.1619, found 234.1642.
17: IR (neat) 1730, 1380 cm⁻¹; ¹H NMR (CDCl₃) δ 2.40 (t, J **1730, 1730** $\mathbf{F} = 6.4 \text{ Hz}, 1 \text{ H}, 2.22 - 2.12 \text{ (m, 1 H)}, 1.98 - 1.78 \text{ (m, 6 H)}, 1.76 - 1.52 \text{ K}$ (m, 4 H), 1.48-1.40 (m, 1 H), 1.34-1.25 (m, 1 H), 1.10 *(8,* 3 H), 53.25 (a), 50.95 (t), 47.50 **(a),** 43.12 (t), 33.36 (t), 33.30 (t), 29.56 (t), 26.96 (t), 26.54 **(q),** *24.63* (9); MS *m/e* (re1 intensity) 192 **(M+,** 47), 135 (100), 80 (53); HRMS calcd for C₁₃H₂₀O 192.1514, found 192.1532. 1.05 *(8,* 3 H): **'9C** *NMR* (CDCl3) **6** 225.80 **(s),** 60.18 (a), 55.49 **(s),**

Acknowledgment. Thanks are due to the Instrumental **Analysis** Center, Faculty of **Engineering,** Osaka University, for assistance in obtaining NMR and mass spectra **on** JEOL JNM-GTX-400 and Bruker AM-600, **and** JEOL JMS-DX303 spectrometers, respectively.

Registry No. 1,136780-97-7; 4,92590-09-5; 7a, 137946-48-6; 14, 137946-56-6; 14 enol acetate, 137946-61-3; 15, 137946-57-7; 16, 138124-77-3; 21, 137946-59-9; Zn(OAc)₂, 557-34-6; Bf₃.OEt₂, 109-63-7; (EtCO)₂O, 123-62-6; BBr₃, 10294-33-4; AlCl₃, 7446-70-0; $SnCl₄$, 7646-78-8; $CF₃SO₃H$, 1493-13-6. *7b,* 137946-49-7; *8a,* 137946-50-0; 8b, 137946-51-1; 9,102794-91-2; 10,137946-52-2; 11,137946-53-3; 12,137946-51-4; 13,137946-56-5; 137946-58-8; 17, 91854-72-7; 18, 138124-75-1; 19, 138124-76-2; 20,

Supplementary Material Available: 'H and '*C *NMR* spectra of 7a,b, 8a,b, and 10-17 and **2D** 'H-'H COSY **spectrum** of 8a (25 pages). Ordering information is given on any current masthead page.

Higher Order Zinc Cuprate Reagents. Very High 1,3-Chirality Transfer Reaction of y-(Mesy1oxy)-a,@-unsaturated Carbonyl Derivatives

Yoshinori Yamamoto,*^{,†} Yukiyasu Chounan,[†] Miwa Tanaka,[†] and Toshiro Ibuka'

Department of Chemistry, Faculty of Science, Tohoku University, Sendai **980,** *Japan, and Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan*

Received July 31,1991

We previously reported that chiral γ -(mesyloxy)- α, β unsaturated esters undergo, 1,3-chirality transfer to form chiral α -alkyl- β , γ -unsaturated esters with high optical purity using organocopper-BF₃ reagents.¹ The use of BF_3 was essential in this highly efficient chirality transfer reaction. However, in some cases, this strong Lewis acid caused undesired side reactions and prevented the **use** of acid-labile functional groups. Development of milder reagents with wide applicability is highly desirable.

We wish to report that higher order zinc cuprates $R_2Cu(CN)(ZnCl)_2$, prepared from CuCN and 2 equiv of RZnCl, react with γ -(mesyloxy)- α , β -unsaturated esters, ketones, and nitriles in an anti- S_N^2 manner without the assistance of BF_3 . OEt₂ to give the corresponding 1,3-chirality transfer product with very high de in essentially react with γ -(mesyloxy)- α , β -unsaturated esters,
and nitriles in an anti- S_N2' manner without the
e of $BF_3 \cdot OEt_2$ to give the corresponding 1,3-chi-
unsfer product with very high de in essentially
ive yield (eq assistance of $BF_3 \cdot OEE_2$ to give the corresponding 1
rality transfer product with very high de in essen
quantitative yield (eq 1). The method for the prepa
 $\frac{B_2 \text{Cu(CN)}[ZnCl]_2}{\text{OMs}}$
of higher order zinc cuprates is s

Finally transfer product with very high de in essentially quantitative yield (eq 1). The method for the preparation

\n
$$
R^2
$$

\n
$$
EW = \frac{P_2 \text{Cu(CN)} \cdot (2 \pi \text{Cl})}{P_1}
$$

\n
$$
EW = \frac{P_3 \cdot (1)}{P_1}
$$

\n
$$
EW = \frac{P_4 \cdot (1)}{P_1}
$$

of higher order zinc cuprates is shown in eq 2. A THF

$$
RLi + ZnCl_2 \xrightarrow{-THF} RZnCl + LiCl
$$
 (2)

$$
2(RZnCl + LiCl) + CuCN \xrightarrow[78 \to 0]^{\circ}C
$$

\n
$$
R_2Cu(CN)(ZnCl)_2 + 2LiCl
$$

solution of alkylzinc chloride and LiCl, prepared from RLi and ZnC12, was added to a THF slurry of **0.5** equiv of CuCN. Needless to say, "higher order" doeg not **mean** that the copper species possesses the structure $R_2Cu(CN)$ - $(ZnCl)₂$, but indicates that the stoichiometry of R, Cu, CN, and ZnCl is 2:1:1:2.² Previously, "lower order" zinc cuprates have been prepared by the reaction of CuCN-2LiX

⁽¹⁵⁾ Ue, **M.; Teukahara, H.; Kobiro, K.;** Kakiuchi, **K.;** Tobe, Y.; **Odaira,** *Y. Tetrahedron Lett.* **1987,28, 3979.**

⁽¹⁶⁾ Corey, E. J.; Chaykowky, **M.** *J.* Am. *Chem. SOC.* **1966,87, 1313.**

^{&#}x27;Tohoku University.

^{*} Kyoto University.

Table I. Reaction of Higher Order Zinc Cuprates with y-(Mesyloxy)-aS-uneaturated Carbonyl Derivatives

entry	substrate	reagent RCuLn	product	% yield (de)
1		$Me2Cu(CN)(ZnCl)2$	$2 (R = Me)$	99 (>99:1)
2		$n-\text{Bu}_2\text{Cu(CN)}(\text{ZnCl})_2$	$2(R = n-Bu)$	98 (>99:1)
3		MeCu(CN)ZnCl·BF ₃	$2 (R = Me)^a$	47 (>99:1)
4		MeCu(CN)ZnCl		ь
5	3	$Me2Cu(CN)(ZnCl)2$	$4(R = Me)$	97 (97:3)
6	3	$n-\text{Bu}_2\text{Cu(CN)}(\text{ZnCl})_2$	$4(R = n-Bu)$	98 (>99:1)
7	3	Me ₂ CuZnCl	$4 (R = Me)$	95 (>99:1)
8	5	$Me2Cu(CN)(ZnCl)2$	6	98 (98:2)
9	5	MeCu(CN)MgBr-BF ₃	6	96 (98:2)
10	5	$Me2Cu(CN)(MgBr)2$. BF ₃	6	90 (98:2)
11	5	$Me2Cu(CN)Li2·BF3$	6	92 ($>99:1$)
12	7	MeCu(CN)(ZnCl) ₂	8	99 (>99:1)
13	7	Me ₂ CuZnCl	8	98 (>99:1)
14	7	$Me2Cu(CN)Li2·BF3$	8	98 (>99:1)
15	7	Me ₂ CuLi-BF ₃	8	$91 (+99:1)$
16	7	MeCu(CN)MgBr-BF ₃	8	60 (95:5)
17	9	$Me2Cu(CN)(ZnCl)2$	10	98 (>99:1)
18	9	Me ₂ CuZnCl	10	98 (>99:1)
19	9	$Me2Cu(CN)Li2·BF3$	10	98 (>99:1)
20	9	$Me2CuLi-BF3$	10	89 (>99:1)
21	9	MeCu(CN)MgBr-BF ₃	10^c	57 ($>98:2$)

'The starting material was recovered in 13% yield. *The starting material was recovered quantitatively. ^cThe SN₂ substitution product **11 was obtained as a byproduct (the stereochemistry was not determined).**

with RZnI which in turn was prepared from RI and activated $\rm Zn^3$ or by the reaction of zinc chloride with $\rm R_2CuLi.^4$

The results are summarized in Table I. Upon treatment with 1 higher order zinc cuprates gave **2** in essentially

quantitative yield with nearly **100%** de (entries **1** and **2),** whereas the lower order zinc cyanocuprate did not react with **1** (entry **4).** The lower order reagent was prepared from MeZnCl and CuCN. Even with the aid of $\bar{\text{BF}}_3$ -OEt₂, the lower order reagent gave **2** in only **47%** yield (entry 3). The conversion of 3 and **4** proceeded very well with the higher order zinc cuprates (entries *5* and **6).** Interestingly, the zinc homocuprate **also** produced very high chemical yields and diastereoselectivity (entries 7, 13, 18).⁵ In conclusion, it is now clear that the newly developed higher order zinc cuprates are very useful in the 1,3-chirality transfer reaction; not only unsaturated esters but **ale0** enones and unsaturated **nitriles** *can* be used **as starting** materials and high diastereoselectivity can be realized.

Experimental Section

Preparation of Me₂Cu(CN)(ZnCl)₂ and Its Reaction with 1. To a 20-mL flask cooled at -78 °C under Ar were placed a magnetic stirring bar, **1.5** mL of dry THF, and **1.8 mL** of a **1.0** M ether solution of MeLi(Li1) **(1.8** mmol). **An** ether solution of $ZnCl₂ (1.0 M \times 1.8 mL)$ was added, and the mixture was warmed to 0 °C with stirring. In an another 30-mL flask cooled at -78 "C under Ar were placed **81** mg **(0.9** mmol) of CuCN and **4** mL of THF. To this **flask** was added the solution from the **20-mL flask** through a double-ended needle. The mixture was allowed to warm to 0 °C, and the stirring was continued for 10 min.

To this higher order zinc cuprate, cooled at -78 °C, was added a THF solution **(1.5** mL) of **1 (107** *mg,* **0.3** mmol).' Stirring was continued at $-78 \degree C$ for 30 min, and the mixture was allowed to warm to 0 $\degree C$. After 1 h, the reaction was quenched with aqueous pH **8 ammonium** chloride solution. The mixture was stirred for **30** min at rt. Extraction with ether, washing with **2** N HC1,0.5 M **aqueous NaHC03,** water, and brine, *drying* with anhyd **MgSO,,** and removal of the solvents gave an oil. Purification by silica gel column chromatography *using* n-hemneAcOEk **(la11 as** an eluant gave 83 $mg (99\%)$ of $2 (R = Me)$ as a colorless oil. MeLi (LiI) indicates that the MeLi is prepared from Me1 and Li and that it contains LiI **as** a soluble salt.

Preparation of Bu₂Cu(CN)(ZnCl)₂ and Its Reaction with **1.** Instead of MeLi in the above procedure, a hexane solution of n -BuLi $(1.58 M \times 1.15 mL, 1.8 mmol)$ was used. To a pale yellow solution of the butylzinc cuprate was added a THF solution of **1** (107 mg in 2 mL of THF, 0.3 mmol) at -78 °C, and the resulting mixture was stirred for **3** h. **An** aqueous pH **8 ammonium** chloride solution was added, and the mixture was stirred for **30** min at **rt.** The same workup **as** above gave **94** mg **(98%)** of 2 **(R** = Bu).

Reactions of Other Michael Acceptors. Essentially the same procedure **as** that above was **used** for 3, 5, **7,** and **9.** For the preparation of other copper reagents, see ref **1.**

Preparation of **7.** A **similar** procedure described previously' was used. Instead of **(carbomethoxymethy1ene)triphenyl**phosphorane, $(EtO)₂P(O)CH₂COPh$ was used.

(E,4S *,5R ***)-44 (Methanesulfonyl)oxy]-5-[** *(tert* -butyldi**methylsilyl)oxy]-2-hexenophenone:** pale yellow **oil;** 'H **NMR** 3.10 (s, 3 H), 4.12 (dq, $J = 6.1$ and 3.7 Hz, 1 H), 5.20 (ddd, $J = 5.5$, 3.7, and 1.7 Hz, 1 H), 6.96 (dd, $J = 15.3$ and 5.5 Hz, 1 H), **7.24** (dd, J ⁼**15.3** and **1.7** Hz, **1** HI, **7.46-7.64** (m, **3** H), **7.94-8.01** (m, **2** H); **IR** (CClJ **2960,2935,2860,1735,1680,1630,1600,1450, 1370,1255,1180,970,935,840,** and **635** *cm-';* exact MS **(EI)** *calcd* for $(M - CH_3)^{++}C_{18}H_{27}O_5$ SiS m/z 383.1348, found m/z 383.1349. $(CDCl₃)$ δ 0.10 (s, 6 H), 0.90 (s, 9 H), 1.22 (d, $J = 6.1$, Hz, 3 H),

 $(E, 2S^*, 5R^*)$ -2-Methyl-5- $[$ (tert -butyldimethylsilyl)oxy]-3-hexenophenone **(8):** pale yellow oil; 'H NMR (CDC13) *^b***4.01** (8, **3** H), **0.00** *(8,* **³H), 0.85** *(8,* **⁹H), 1.15** (d, J ⁼**6.2** Hz, **3** H), **1.31** (d, *J* = **6.7** Hz, **3** H), **4.06-4.18 (m, 1** H), **4.18-4.30** (m, **¹**H), **5.58** (ddd, J ⁼**15.4, 5.5,** and **0.7 Hz, 1** H), **5.73** (ddd, J ⁼**15.4, 7.6,** and **0.9** Hz, **7.40-7.58 (m,** 1 H), **7.92-8.01 (m, 2** H); IR (CCl,) **2970,2940,2865,1745,1695,1600,1450,1370,1255,1090, 972, 835, and 705 cm⁻¹; exact MS (EI) calcd for** $(M - CH_3)^{+1}$

^{(1) (}a) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Am. Chem.
Soc. 1989, 111, 4864. (b) Ibuka, T.; Akimoto, N.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Org. Chem. 1989, 54, 4055. (c) Ibuka, T.; Tanaka, M.; Yamamoto, Habashita, H.; Funakoshi, S.; Fujii, N.; Oguchi, Y.; Uyehara, T.; Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1990, 29, 801.

(2) For discussions on "higher order" cyano cuprates, see: Bertz, S.

H. J. Am. Chem. Soc. 1990, 1

Ellsworth, E. L. *Zbid.* **1990,112,4032.**

⁽³⁾ Chen, H. G.; Gage, J. L.; Barrett, S. D.; Knochel, P. *Tetrahedron Lett.* **1990,31,1829. Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J.** *J. Org. Chem.* **1988,53,2390.**

⁽⁴⁾ Nakamura, E.; Sekiya, K.; Arai, M.; Aoki, S. *J. Am. Chem* **SOC. 1989, 111, 3091.**

⁽⁵⁾ The zinc homocuprate was prepared by treating MezCuLi in THF with 1 equiv of ZnCl₂ in ether at 0 °C. The dimethylhomocuprate was prepared by adding 2 equiv of MeLi (LiBr) in ether to CuBr-Me₂S in THF at -78 °C.

Cl&InOzSi m/z **303.1780,** found m/z **303.1758.**

Preparation **of (E,48*,6R*)-4-[(Methanesulfonyl)osy]-** $5 - [(tert-butyldimethylsilyl)oxy] - 2-hexenenitrile (9). As a$ phosphonate reagent, $(EtO)_2P(O)CH_2CN$ was used: colorless oil; lH *NMR* (CDClJ **6 0.10 (a, 3** H), **0.10 (a, 3** H), **0.90 (a, 9** H), **1.18** (d, J ⁼**6.5** *Hz,* **3** H), **3.09 (e, 3** H), **4.05** (dq, J ⁼**6.5** and **3.7** Hz, **1 H), 5.01** (ddd, J ⁼**5.6,3.7,** and **1.7** *Hz,* **1 H), 5.73** (dd, J ⁼**16.1** and 1.7 *Hz*, 1 *H*), 6.71 (dd, $J = 16.1$ and 5.6 *Hz*, 1 *H*); *IR* (CHCl₃) **3030,2965,2940,2870,2245,1475,1465,1365,1355,1260,1185,** 1120, 980, 945, 850, cm^{-1} ; exact MS (EI) calcd for $(M - CH_3)^{++}$ C12HpNOISiS m/z **304.1039,** found m/z **304.1034.**

hexenenitrile (10): colorless oil; ¹H NMR (CDCl₃) δ 0.05 (s, 3) H), **0.06 (a, 3** H), **0.90 (a, 9 H), 1.21** (d, J ⁼**6.5** *Hz,* **3** H), **1.40** (d, **J=7.2Hz,3€€),3.24-3.37(m,lH),4.27-4.38(m,lH),5.55(ddd,** J ⁼**15.0, 6.0,** and **1.6** Hz, **1** H), **5.84** (ddd, J ⁼**15.0,4.8,** and **1.5** *Hz,* **1 H); IR** (CCW **2960,2930,2850,2230,1725,1470,1460,1368, 1358,1250,1148,1090,1050,968,** and **835** cm-'; exact MS (EI) *calcd for* M^+ C₁₃H₂₅NOSi m/z 239.1705, found m/z 239.1707. *(EfS* ***\$R)-2-Methyl-&[(tert-b~tyldimethyl~ilyl)0~]-3-**

Registry **No. 1,129389-01-1; 2(R** = Me), **138126-75-7; 2 (R** = n-Bu), **138126-76-8; 3,129389-00-0; 4 (R** = Me), **138126-77-9; 4** (R = n-Bu), **138126-78-0; 6, 138009-29-7; 6, 138009-30-0; 7,** CuCN, *544-92-3;* MeLi, **917-54-4;** n-BuLi, **109-72-8;** MeI, **74-88-4;** Zn, 7440-66-6; Me₂CuLi, 15681-48-8. **138009-31-1; 8,13800932-2; 9,138009-33-3; 10,138009-34-4; 11,** 138009-35-5; 12, 81028-12-8; 13, 138009-36-6; ZnCl₂, 7646-85-7;

Supplementary Material Available: Synthetic methods and **spectral data** for **1-11 (13** pages). Ordering information is given **on** any current masthead page.

Stereoselective Dimerizations of Arene-cis -diol Acetonides Derived from the Oxidation of Halobenzenes by *Pseudomonas putida* : **Absolute Configuration of the Adducts by X-ray Crystallography**

Tomas Hudlicky,*^{,†} Eric E. Boros, Horacio F. Olivo, and Joseph S. Merola'

Department *of* Chemistry, Virginia Polytechnic Institute and State University, Bbcksburg, Virginia *24061*

Received August **27,1991**

The microbial oxidation of aromatic compounds to the corresponding arene-cis-diol metabolites by mutant strains of Pseudomonas putida (e.g. $1 \rightarrow 2$) has been the subject of considerable biochemical research since ita introduction in **1970** by Gibson et **al.'** The high degree of stereospecificity, substrate variability, and procedural ease inherent with **these** microbial oxidations have made the **diols** especially attractive in recent years **as** starting materials in enantiocontrolled **total** synthesis.2 This has subsequently led to their commercial availability **as** chiral synthons? In response to this wave of interest, Boyd and co-workers have recently developed a general method for determining absolute configuration and optical purity of cis-diol metabolites.⁴

Synthetic applications involving cis-diol metabolites often require protection of the hydroxyl groups in the form of an acetonide. We wish to report that halogenated arene-cis-diol acetonides **(3)** dimerize in a completely stereoselective fashion to highly stable crystalline dimers **(4)** (Scheme I). 5 In addition, the absolute configuration of the bromo dimer **(4a)** was established by X-ray crystal-

^a(i) *P. putida* 39-D; (ii) DMP, pTsOH (cat.), acetone; (iii) neat, $0 \text{ }^{\circ}C \rightarrow \text{rt}$; (iv) Bu₃SnH, AIBN, tol., Δ ; (v) Na⁰, EtOH, Δ ; (vi) HOAC, H20, **rt.**

Table I. Reaction Conditions and Yields for the Dimerizations of 3 to **⁴**

acetonide	x reaction conditions		% yield of $4a$
Зa	Br	neat, 0 °C, 15 d	32 (61)
3b	$_{\rm Cl}$	neat, 0 °C, 23 d	49 (51)
3a	Br	neat, rt 8 d	80
3b	CI.	neat, rt, 8 d	71
3a	Br	$CDCl3$, 60 °C, 8 d (sealed tube)	70 ^b
3a	Br	CDCl ₃ , 100 °C, 2 d (sealed tube)	\mathcal{L}
3b	Cl	$CDCl3$, 100 °C, 6 d (sealed tube)	>95 ^b

Isolated yield of 4, percent recovery of unreacted 3 from chromatography is given in parentheses. bDetermined from the ¹H NMR spectra. ^c Starting material underwent significant aromatization.

lography which confirmed independently the absolute configuration of the P. putida **39-D** metabolite **2a** of bromobenzene. The absolute configuration of the chloro dimer **(4b)** was established by chemical correlation which involved reduction of both **4a** and **4b** to the nonhalogenated adduct **5,** followed by partial deprotection to the diol **6.**

Reaction conditions and yields for the dimerizations of **3** to **4** are provided in Table I. The acetonide **3a** of bro-

⁺Recipient of the Research Career Development Award, 1984-1989, National Institutes of Health *(AI-00564).*

^{*}To whom correepondence concerning the X-ray crystallographic studies should be addressed.

⁽¹⁾ Gibson, D. **T.;** Heneley, M.; Yoshioka, H.; Mabry, **T.** J. Biochem*istry* 1970,9,1626.

^{(2) (}a) Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. Tetrahedron Lett.
1989, 30, 4053. (b) Hudlicky, T.; Seoane, G.; Pettus, T. J. Org. Chem.
1989, 54, 4239. (c) Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org. Chem. 1990,56,4683. (d) Hudlicky, T.; Price, J. D. *Synlett* 1990,159. (e) Hudlicky, **T.;** Rulin, F.; **Tsunoda, T.;** Price J. D. *J. Am. Chem.* SOC. 1990, 112, 9439. (f) Ley, S. V. Pure Appl. Chem. 1990, 62, 2031. (g) Ley, S. V.; Redgrave, A. J. Synlett 1990, 7, 393. (h) Carless, H. A. J.; Billinge, J. R.; Oak, O. Z. Tetrahedron Lett. 1989, 30, 3113. (i) Carless, H. A. Oak, 0. **Z.** J. Chem. SOC., Chem. *Commun.* 1991,61.

⁽³⁾ A variety of arene-cis-diols are available in multigram quantities from Genencor International, Inc., Rochester, *NY*, and ICI Fine Chemicals, P.O. Box 42 Hexagon House, Blackley, Manchester, *M9* 3DA, icals, P.O. **Box** 42 Hexagon House, Blackley, Manchester, M9 3DA, England. (4) **Boyd,** D. R; **Dorrity,** M. R J.; Hand, M. **V.;** Malone, J. F.; **Sharma,**

N. D.; Dalton, H.; Gray, D. J.; Sheldrake, G. **N.** *J. Am. Chem.* SOC. 1991, 113,666.

^{113, 666.&}lt;br>(5) A similar dimerization involving the acetonide of trifluorotoluenediol has been described (e.g. $3 \rightarrow 4$; $X = CF_3$). Our crystal structure of 4a concurs with the stereochemistry assigned to the trifluoro dimer **which was** deduced **using** a variety of **NMR** methods, see: Pittol, C. A.; Pryce, R. J.; Roberta, S. M.; Ryback, G.; Sik, **V.; Williams,** J. 0. J. Chem. Soc., Perkin Trans. 1 1989, 1160.